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To study the feasibility of using the finite elements method for ocean
modelling, a quasi-geostrophic eddy resolving general circulation
model has been driven, using either a classical finite differences tech-
nique or a finite elements technique. This feasibility has been clearly
demonstrated, and a comparison of the models” performances shows
that, for simulations of realistic basins, the finite elements model CPU
cost is only four times the finite difference model cost.  © 1994 Academic
Press, Inc.

1. INTRODUCTION

Ocean circulation numerical modelling started in the
sixties with Sarkisyan [43] and Bryan and Cox [11]. Since
then, tremendous progress has been made in this field,
thanks to a better understanding of the-ocean dynamics and
thermodynamics, improvements in the physics included in
the models, the development of new modelling techniques,
and the spectacular improvement in the performance of
computers. The aim of this paper is to contribute to one of
these domains by examining the possible use of one numeri-
cal technique which has until now not really been applied to
ocean numerical modelling: the finite element technique. It
would be beyond the scope of this paper to give an extensive
description of the progress and achievements made in the
field over the last few years with the more traditional finite
difference techniques. However, in order to better under-
stand the context of the following developments and to
provide the reader with benchmarks for the present study,
within the huge and very complex field of ocean numerical
modeliing, it is important to address some related issues in
this Introduction: primitive equation (PE) versus more
simplified models, eddy resolving versus noneddy resolving
models, various vertical descriptions of the domain studied

* Laboratoire de Mod¢élisation et Calcul, Institut de Mathématiques
Appliquées de Grenoble, BP 53X, 38041 Grenoble Cedex, France

34

and its vertical discretization, and, finally, horizontal
discretization.

The ocean is a tridimensional domain. Basically, the
Navier Stokes equations and equations for the conservation
of heat and salt allow us to describe the dynamics and ther-
modynamics of the ocean. However, the horizontal scales of
the world ocean are much larger than the vertical scale, and
the compressibility of sea waier is weak. This makes it
possible to reduce the Navier Stokes equations under two
major assumptions (hydrostatic balance and Boussinesq
approximations), leading to the so-called primitive equa-
tion formulation (PE model) [12]. The early models were
based on this PE formulation: Friedrich {21 ] for the North
Atlantic, Cox [15] for the Indian Ocean, and Bryan,
Manabe, and Pacangwski [137} for world ocean circula-
tions. Despite their coarse vertical and horizontal resolu-
tions, they were able to produce current and water mass
characteristics which qualitatively compared reasonably
well with observations, However, these models were
obviously too viscous, because of their lack of resolution
and the crude parameterization of the subgrid scale pro-
cesses, Hence the efforts in the field of ocean modelling
started with Holland and Lin [26 ], to investigate the role of
mesoscale eddy motions in global circulations, by explicitly
resolving these scales in the simulations. These models were
called EGCMs (eddy general circulation models) in con-
trast to the GCMs (general circulation models) mentioned
above. These EGCMs need a very high resolution: their
mesh must correspond to at least a fraction of the first
internal radius of deformation, of the order of 40 km
at midlatitudes. Because of computer limitations, these
investigations were mainly carried out on simpler models
than the PE models. The ocean dynamics is strongly
geostrophic, due to the scales of the flows and the rotation
of the earth, and this allows the development of simpler
models: quasi-geostrophic (QG) models [27] and balance
equation models [227], among others. These models are
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much cheaper in terms of computer time, and their output
is easier to understand than the more complex output of
the PE models. Hence the possibility provided by the
computers of the eighties to carry out very high resolution
experiments, with meshes of the order of 10 km [1]. These
studies, developed over more than 13 years, have led to a
comprehensive understanding of the processes controlling
the mean and eddy kinetic and potential energy distribu-
tions over large parts of the world ocean. Nevertheless, it
must be acknowledged that it is stili not known how to
properly parameterize these smali-scale Reynold stresses in
large-scale coarse resolution models, where the mesoscales
are not explicitly and correctly resolved. Hence the current
tendency to take advantage of rapidly increasing computer
power and develop high resolution realistic numerical
models. However, they are still limited, because of limita-
tions on the largest scientific computers now availabie, to
half a degree resolution for global ocean scales [45], or to
1 to 1 of a degree for basin scale experiments: Bryan and
Holland [10] and Boning ef al. [9] for the North Atlantic,
and Webb et al. [48] for the Antarctic circumpolar current.
There is thus a strong demand for new models which can be
used to focus and increase the horizontal resolution over
special areas of major importance, without exceeding the
present computer limits. The finite element technique can
offer such a possibility. However, it has never been tested in
ocean circulation modelling. The aim of this paper is
precisely to contribute to the promotion of this method. In
order to start with a simplified context, and reasonable
computer costs, we have decided to limit our investigations
first to a QG experiment in an EGCM mode.

Another major issue in ocean modelling is the way in
which the vertical structure of the domain is described and
its discretisation is treated. The ocean is vertically stratified,
with quasi-horizontal isopycnics (ic., levels of same den-
sity), except within fronts. Hence one class of ocean models
approximating the vertical density structure with layers of
constant density: the simpler two-layer models have thus
immensely contributed to explaining many ocean circula-
tion phenomena (see, for example, [39,447). Another
approach, which retains the continuously stratified nature
of the ocean, is to separate the vertical structure from the
time and horizontal structure in the equations of motion;
this approach was first restricted to the inviscid equations
linearized about a static background density for a flat bot-
tom ocean, thus allowing analytical approaches to be used
[33,41]. These are the so-called modal equations, each
mode satisfying a set of shallow water type equations. The
inclusion of the vertical mixing of heat and momentum has
been demonstrated to be possible by McCreary [34], while
the inclusion of topography with nonlinear and diffusion
terms has been considered by Flierl [20], Davies [17], van
Forest and Brundrit [ 477. However, this approach becomes
inefficient if many modes and their interactions have to be
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considered. The alternative is to replace the vertical coor-
dinate z by a generalized vertical coordinate s, a function of
space, time, and some characteristic physical parameter of
the problem [297. The more classical level model can be
considered as part of this classification, by taking s=z.
Choosing s = p, pressure, is very popular in meteorology,
but rarely used for complex realistic applications because
the lower boundary conditions are awkward. Taking s = p,
density (or potential density), leads to the isentropic coor-
dinates: the rationale for this choice is that, in the interior of
the ocean, density of a particle is nearly conserved because
of the absence of strong mixing processes, the flows being
along isopycnals. The above mentioned layer-models are
simplified versions of this formulation. The development of
the isopycnic coordinates for realistic ocean circulation
models has encountered technical difficulties related to the
fact that isopycnals can intersect boundaries (sea surface, or
topography). The treatment of turbulent processes due to
mixed layer dynamics near the surface is another major
problem. This approach has been intensively investigated
by Bleck and Boudra [5], Gberhuber [ 381, and Bleck et al.
[61 and is now under test in basin-scale ocean circulation
experiments [36] and in global ocean scale experiments
[38]. Another generalized vertical coordinate system is the
so-called “sigma system,” which attempts to simplify com-
putations at the top and bottom boundaries by taking, for
example, s=z/D, where D is the local depth of the ocean;
this approach is well adapted to follow complex bottom
topography; however, serious problems related to trunca-
tion errors have to be circumvented when there are abrupt
changes in topography (see, for example, {7, 257. As stated
before, our goal in this paper is to investigate the
possibilitics of the finite clement technique as a way of
obtaining greater flexibility to deal with the horizontal
resolution of ocean circulation problems. Thus, in the
following paragraphs, we have decided to treat the vertical
dimension using the simpler layer formulation, as a
straightforward extension of the two-layer formulation
described by Holland [27]).

As many of the above mentioned approaches, the N-layer
QG formulation that is presented in Section 2 as the
baseline system on which our tests are carried out, results in
the solution of a system of elliptic partial differential equa-
tions. A large variety of methods have been developed for
the numerical solution of such systems [3]: finite difference,
finite elements, and spectral methods have all been
employed with success. Finite difference metheds (FDMs)
replace the continuous differential equations with discrete
difference equations. Finite element methods {FEMs) refor-
mulate the differential equations as a variational principle.
The spectral methods expand the unknown solutions in
terms of predetermined basis sets and employ orthogonality
relations. The finite difference methods are the simplest to
program and have thus been the most common used in
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ocean modelling. Spectral methods have been intensively
used for process studies in simplified basin geometries, like
biperiodic domains and zonal channels, because of their
advantages over finite difference methods in terms of
accuracy for a given number of independent degrees of
freedom. For ocean modelling, FEMs were first applied in
the area of higher frequency phenomena, like tides:
Grotkop 3], Connor and Wang [14], Taylor and Davies
[46], for example, presented ways for solving the shallow
water equations with that technique, and since then this
approach has been intensively developed for coastal
dynamics {49 ] and global ocean tide modeliing {317. The
feasibility and utility of FEMs for modelling ocean
dynamics was addressed for the first time by Fix [19] who
investigated their properties within the simplifying quasi-
geostrophic approximation. He concluded that there were
several advantages: precision, conservation of energy and
enstrophy, natural treatment of boundary conditions,
flexibility of discretisation for complex areas. He
demonstrated the stability and convergence of the semi-
discrete finite element formulation of the problem and
established the conservative properties of its numerical
approximation for energy, vorticity, and enstrophy, inde-
pendently of the irregularity of the grid used for spatial
integration. Given these conclusions, some attempts were
made to introduce FEMs in the ficld of ocean modelling.
Haidvogel, Robinson, and Schulman [24] compared the
precision of a finite difference model, a finite element model,
and a spectral model, for applications to open ocean
problems and concluded that it would be of value to
develop the FEM. Dumas, Le Provost, and Poncet [18]
investigated the performances of an FE model in solving the
classical barotropic wind-driven mid-latitude ocean basin
circulation problem and found that the precision of their
results compared favorably with the analytical solutions of
Stommel and Munk for linear cases and with the earlier
results obtained by FD techniques for non-linear cases. As
their solutions typically include a western boundary layer
with intense velocity gradients, the advantage of refining the
triangulation along the western wail of the basin was clearly
illustrated. These early models were then extended to the
more realistic case of vertically stratified domains: Miller,
Robinson, and Haidvogel [35] developed methods to deal
with the depth dependence of the flow, keeping a FE
method on the horizontal, and testing a collocation method
on the vertical. The model was then intensively applied to
realistic open ocean modelling problems (see, for instance,
[427]). Le Provost [30] applied an extension of the
barotropic finite difference model of Dumas ef a/. to a two-
layer stratified domain, but the advent of vector computers
4t about the same time slowed down efforts in that direction
because of the very high performance level on this class of
computer of the more classical finite difference models based
on fast Fourier cyclic reduction methods.
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The aim of this paper is to take another look at this exten-
sion of the FE method to a multilayer ocean, because of the
renewed interest in the field of ocean modelling, in testing
alternative techniques to the standard FD codes, as stated
above. As stated earlier, the paper will be limited to the
quasi-geostrophic formulation for the sake of simplicity, but
the method for solving the associated Helmholtz equations
is valid for the more general case of the so-called PE models
generally used for realistic ocean circulation modelling
simulations. The first part will review the general formula-
tion of the QG stratified ocean circulation model equations.
The second part will present the method used to numerni-
cally solve these equations over a closed domain, using a
leapirog method for time dependence and either a classical
FFT cyclic reduction FD method or a new FE method for
space integration at every time step. The third part presents
the physical features of a numerical solution chosen as a
test. In the fourth part, the performances of the two methods
will be compared in terms of quantitative nemerical output
and computer costs. Finally, the results will be generalized
to more realistic situations for practical applications to real
ocean basins, and the conclusions will be extended to more
compiete primitive equation numerical ocean modelling.

2. OCEAN CIRCULATION MODEL:
QUASI-GEOSTROPHIC FORMULATION

Equations

The ocean is vertically stratified in terms of temperature,
salinity, and density. In the present quasigeostrophic
formulation, only density stratification is considered. The
verfical structure is modelled by dividing the domain into
N layers (i=1 to N) of density p; and depth thickness at
rest H,. The governing equations are the quasi-geostrophic
non-linear potential vorticity equations for each layer,

bij
avzl,b,- = J(Vz‘l’f + ) +fﬁ0i (w:_ 172~ Wi i/2)

1
- AV“‘)&E— 6£N£V2¢f+ 6,‘1 ‘}—1_ curl T,
1

i=1, .. Nlayers;

dy=1 for i=40 for i#j, (1a)

coupled with the continuity equation applied at each
interface,

it L2

&
-@—F Wi~ ) =T — Y Wy 1/2) +g_f0— Wiy,

i=1, .., N—1interfaces. (1b)
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W ; are the quasi-geostrophic stream functions in the various
layers, and w,,,, is the vertical velocity at the interface
i+ 1/2. According to the formuia used by Phillips [40], the
interfacial stream function ¥, ,,, is evaluated as the
weighted average of ¥, , and ir:

v, =H1+1Q’15+H;‘!’;+1
e H+H.,,
The velocity components for each layer are u,= — &\, /0y

and v, = d\,/dx. Equations (1a) expresses that the local rate
of change of relative vorticity in each layer is produced by
horizontal advection, stretching of the water columns,
dissipative harmonic friction with coefficient 4, bottom
frictional effects on the lower layer with coefficient ¢, and
vorticity input by the wind stress curl in the upper layer.
Equation (1b) can be considered as predicting the
deviation h; ., of each interface from its equilibrium
position (A, o= — folW; 1 — W)/ V2), with g'* ' being
the reduced gravity g'*'* = g{p,— p,,1)/py, Where pg is
the mean density over the whole domain. J is the
jacobian operator; f = fy + f{y — »,} is the variable coriolis
parameter ( y, refers to the mid-latitude of the basin).

Boundary Conditions

For practical tests, and within the scope of this paper,
Eqgs. (1) are integrated over a very simplified domain £: a
square box of constant depth. The forcing will be a wind
stress curl of intensity t,, zonally constant and meridionally
sinusoidal, inducing a two-gyre ocean circulation pattern.
Such an academic case has been intensively investigated
over the last 10 years in an attempt to study the role of
inertia and mesoscale eddies in the subtropical and
subpolar gyre circulations at midlatitudes.

In this formuiation, streamfunctions in each layer must
take constant values at each time step along the side walls
282 of the domain:

v, =C(1) on 82 for i=1,.,N.
These C,(¢) have to be computed at each time step, for each
layer, in order to conserve mass:

J Wipipdx dy=0;
2
ie.
¢
[ S Wii—wddrdy=0={ W)~ (0) dxdy
20l 2

=] Winilt=0)=,(r=0)) dx dy.
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A complementary boundary condition is necessary along
8, because the problem to be solved corresponds to a
second-order Helmholtz type equation: the vorticity
E, =V, will be prescribed. For the present tests, £, =0
{slip condition) will be chosen.

Matricial Formulation

In order to simplify the writing of the following, it is
useful to introduce a matricial formulation. By eliminating
W, 1,5 from system (1) and using the notations,

'{l=('\b]9---’ ‘.bN)T
R, =R 0
| 0 —R, R,+R, —R, 0O
—RyRy
with
/o z
Ri=—5— and R | =——,
81+U2H,- 1 +1 g,+1/2HH—1
system (1) can be written
o6 5 5
E;=E+A(V@+W@+W i+ D (2a)
O=V'"—wy in (2b)
with
JO + £ 1/H, curizt
Jig ,
E= ( z+‘f ¥a) and D= 0
JOn+ S 4 n) —szl.UN

The existence and unicity of the solution for problem (2)
with the above boundary conditions was proved by
Bernier [2].

Formulation through Eigen Modes

The difficulty in solving (2) is that, given the tridiagonal
structure of matrix W, the problem is fully implicit, with
links between layers i—1, i, and i+ 1, and that Egs. (2a)
and (2b) are coupled. 1t is possible to decouple the resolu-
tion of Egs. {2) on the vertical by looking at solutions in
terms of modes in the base which diagonalizes matrix 1.

Let B be the matrix required to switch from a layer
formulation to a mode formulation of the problem, and
A=B"'WB. A is the diagonal matrix of the eigenvaiues 1,
of W. The elements of mairix B are denoted (b,j),
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i,j=1---N, and those of B™' :b,.j.‘. Also, we use (#) for the
eigenvector solutions:

W= BY¥* and & = Be*.
Matrix B is normalized so that
1 N (b_-l-l 2 N
—_= Z —L—’ Z b_.l = 1,
" L= H, =1 Y
N .
Y br'=0 for i#1

N.B. The first eigenvalue of W is zero.
After multiplication by B~', system (2) becomes

E 3
ag{ =B 'E+ ANVO* + A0* + A*¥*)+ B~'D  (3a)
O*=VP* _ f¥*  inQ (3b)

Adimensionalisation

Before proceeding further, let us adimensionalise Eq. (3).
We take the following order of magnitudes for the main
variables and functions in relation to the characteristics of
the physical problem addressed:

L, horizontal scale of the domain £,

U, horizontal velocity scale;

T=(8,L)"" time scale, where i, is the meridional

gradient of the Coriolis parameter, at the median latitude of
the basin;

1,4, wind stress scale.
This adimensionalisation results in a definition of typical
scales associated with the major processes controling the

solution (see, for example, Le Provost and Verron [32] for
more details):

82 =A/(B,L7), width of the lateral friction boundary
layer;

d,=¢/(Po L), width of the bottom friction boundary layer;

872 = U/(B,L?), width of the inertial boundary layer;

A" = L*A, adimensional eigenvalue matrix.

In the following, all the variables are adimensional. The
equations are then

. 4
af; =BTE40XVO*+A'0* + A¥*)+ B™'D  (4a)
O =V _ A'¥*  inQ (4b)
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with
J(330, + y.41) 1/H, curl ©
2
E— J(ésez‘f’y,lflzl and D= 0
J(87 05+ v, ¥n) 5,V
with the boundary conditions:
Vi,=0 ond@ for i=1---N
y,=C{t) on® for i=1.--N

'[ Wi dx dy=0.
@

Method for time integration

We thus have to integrate Eqs. (4) with the above
boundary conditions in space and time. The classical
leapfrog method with three time step levels is used for the
time integration. The non-linear and Coriolis terms are
taken at the intermediate time step n. With regard to the
frictional terms, the term corresponding to the studied
mode is isolated from the others and treated semi-explicitly.
We thus have

@*.n+l_@*,n—l R
— =BT} 63{(V‘@*"’“ +Vig* 1)
24t

+A'@*,n+A'2gm.n}

+ S—éf{BB[(@*'””—@*'”“)/2

+A'PE"]+ TCH (5a})

@F L =V2pEntl_ ikt in2 (5b)
with BB = diagonal matrix of diagonal elements (b, yb )
and
bin X0 b0+ 2,00

re=| P Zow2 bu(OF + A7)

bn JEN bN,—(Bﬁ + qu'lj?")

and
1/H, curlt
0
S= . ;
0
ie.,
M@*JI+ 1

= F(@*"~ !, V:@="~1 @*", w*" £ S, TC")
V2gxa+l _ gigen+l — g+l

(6a)
(6b)
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where M is a diagonal matrix independent of time:r, of
diagonal element:

l(l
2\ 4t

In order to satisfy the boundary conditions, auxilliary
functions y¥,, ¥,. 6%, and 0%, are introduced:

+ éf(b.@lbfw) - 53V2)'

‘J’f = * *C?(t)‘p?,‘b gfk:Bfa_iin*(I) be
. =0 on £82 g%, =0 on o2 (7a),(7b)
yh=1 on d€2; fF, =1 on 8.

Functions ¢}, and 0f, are independent of 7 and are
calculated as follows:

MO}=0 in &2 Vi, — Lk, = 0%, in
ar=1 on 092; y=1 on 0£2.
{8a), (8b)

6%, and ¥, are then obtained as

M@:‘n+i =F(@*.nglav2@*,n—1,
@x" g g8, TCY)

Grnti=Q on 8Q2
VZW:'"+1)A'W:'"+1=@:‘H+I (9)
wrotl = on 802

a

At =0, y?=0. At each time step, system (%) must be
solved. Constants C*(¢) are then given by

TP+ CH0 [P0,
£

thus making it possible to compute the complete solution
at time 7. The stability of this scheme was studied by
Bernier [27.

In the following paragraphs, we will compare the perfor-
mance of two methods for integrating system (9) within an
oceanographic context, bearing in mind that, among other
constraints, domain £2 generally has a complex geometry.
These two methods are:

0

« a finite difference FFT cyclic reduction method, com-
bined with a capacitance matrix method (not described
here, but dealt with by Blayo and Le Provost [4]).

« a finite element method. To implement this method, a
variational formulation must be determined.
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Variational Formulation

We use the notations: {a,a'}=[{,a 4" dxdy and the
Green formula: {V3a,a'} = —{Va,Va'} +[,, (dafdn).
@ ds, where n is the normal direction to the boundary 0Q
and s is a curvilinear coordinate along 0.

Let us multiply Eqs. (9) by a test function @ and integrate
over the whole domain. Using the Green formula and given
the fact that the curvilinear integrals along 26 vanish
(because @F"+' and ¥*"+' vanish along 402), the
problem can then be stated as: Find ©*"%! and P*"+!
in (HyQN" so that Y@ e (H(2))" (H ()= Sobolev
space),

8 52
[Hlﬁzf&e] o+, oy + > {VOr ", Vo)

24t 2

3
+5—{V@*"" Vo) + (BE", &)

| §
[_ Id——fBB] (@xn=} @}

+6S(Ar{9*.n’ Cb} +A’2{QP*.H’ ¢})
(S, @) —8,[{A'BBF*", &} + (TC", &}

and
(VPR VD) 4 A {Wr" ), b}
=—{@r"*, &} in Q.
The computation of @F and ¥ in (H 5(£2))" is carried out
initially by solving the following variational problem, with

@F! and ¥¥! taken as unity along the boundary: Find
@F°and ¥¥%in (H)(2))" so that VP e (H (2))",

1 5
[— Id + éfBB] (03", @)+ (YOI, Vo)

24
24t 2
OF=0:"+0r"
(VERO VO + A { P}, 0}
= {8, D) (VFF. VO + AP}, D)
Prowror P

[ 1 Id—‘S—fBB]{Q*:@H VO3, Vo)

Finite Element Formulation
If, with m =1 to N modes or layers, we let:

A, =(a;),,, the integration points of the domain
K=Card 4,

p; = test function of value one at the integration point a,
and zero elsewhere.
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Then for each mode (or layer), the variables are expressed
as lincar combinations of the p, functions;

K

Y= z 2% o

i=1

The matrices which must be used are linear combinations of
two basic matrices:

TMAS = [{Pia Pj}]i.j and TCOUR = [{VP;':VPJ'}]U-

These two matrices are symmetrical, definite positive,
sparse, and not time-dependent. For the different layers, the
corresponding matrices are

3

1 5
—1d +5-2-—f b,;"NbN_m} TMAS +-* TCOUR

™ =
ASp [2At

and

TCOUR,,=TCOUR + 4, TMAS,

‘We thus have 2N matrices. In practice, after having built
a finite element grid, the computations are made in the
following sequence:

Initialisation.

» initialisation of the physical constants,
» computation of matrices A, BB, B, B!,

» construction of the matrices TMAS and TCOUR,
TMAS,, and TCOUR,,,

« beginning of computation of @F and ¥,

» Choleski decompeosition of matrices TMAS,, and
TCOUR,,,

« computation of right-hand source members,
« end of computation of @# and ¥}
» computation of [, ¥¥,;

For each time step:
« computation of the Jacobian and other source terms
for the right members, by layers,
« switch from layers to modes,

« computation of the second member for the vorticity
equations,

« resolution of the vorticity equations to obtain &3,

« computation of the second member for the stream
function equations,

= resolution of the streamfunction equations to obtain
¥,
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« computation of the boundary constants C¥(r),
« computation of @* and ¥*,
» switch back from modes to layers;

Comment:

The resolution of these linear systems must be very
efficient. Two kinds of methods have been tested: direct and
iterative. Given the fact that the matrices are symmetrical,
we have taken the Choleski method as a direct method, and
the preconditioned conjugate gradient as an iterative
method. Tests were carried out on two 550 % 550 linear
systems, corresponding to mass and stiffness matrices for P2
finite elements. Whatever the choice of preconditioning, the
direct method was shown to be the fastest. The complete
Choleski decomposition was made once, at the beginning of
the resolution.

The computations of the right-hand sides of the equations
to be solved need only linear combinations between
matrices and vectors. Hence there is an efficient vectoriza-
tion of the code on a Cray computer.

3. NUMERICAL TESTS

Choice of Numerical Parameters

In order to test this finite element model against the
more classical, and very efficient, cyclic reduction FFT +

: \/
PAvAvz N / / \/
%‘ 3 é\g\; ?é\ E\ i
V4
FIG. 1. Grid used for the finite element application. The charac-

teristics of this grid are the following: 630 triangles, 345 gridpoints, 1319
degrees of freedom per layer. The half bandwidth of the associated matrix
is 101 elements. If this domain corresponds to a square ocean of
2000 km x 2000 km, the resolution along the western boundaries is 18 km
in the middle of the basin and 109 km on the eastern side. In comparison,
the resolution for the uniform grid used for the finite difference application
is 20 km everywhere, ie. 10,201 degrees of freedom,
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capacitance method, one standard kind of experiment was
reproduced, an experiment which has already been used
intensively in recent years to investigate the physical
properties of eddy resolving general ocean circulation
models {see, for example, [28] or, more recently, [1]). The
numerical experiments were restricted to a rectangular
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domain, and controlling parameters were chosen in order to
remain within a simple class of physical processes.

The size of the basin is limited to 2000 km x 2000 km,
with a constant depth of 5000 m, located at a mid-latitude
of 40° (fo=093x10"*s~", B=2x10""m " 's™"), and

oriented so that the x direction is east and the y direction
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FIG. 2. Time history of the basin average kinetic energy for the finite element (A) and finite difference (B) solutions over the 3000 days of integration

of the comparison test. Units are the same for the three layers: (a} 0.1 m?s 2 full scale for layer 1; 0.08 m?s ~2 full scale for layer 2; and (c) 0.003 m

25—2

full scale for layer 3, Note the different phases of the experiment: the linear spinup from days 0 to 600, the buildup of the inertial circulation (jet formation
along the zero wind stress curl and eastward penetration, and westward recirculation) from day 600 to 1200, destabilization of flows and setting up of
turbulent regime from day 1200 to 1400, and progressive establishment of the turbulent solution around its mean steady state from day 1400 to the end

of the simulations.
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north, with the origin of the cartesian tangent reference
coordinate system at mid-latitude on the western solid
boundary. The domain € is then {xe [0, L], ye [ —0.5L,
+0.5L7}. The wind forcing pattern is taken as

(X, ¥) = Ty, COS 2%; ie, curlt=— 2Mman sin 2y
It drives a double-gyre circulation within the basin, sym-
metrical in relation to the mid-latitude y = 0. The vertical
structure of the ocean is described by a three-layer stratifica-
tion, with respective thicknesses of H, =300 m, #, =700 m,
and H;=4000m, and reduced gravity coefficients of
g' " =00357ms " and g+ 2 =0.0162 ms 2,

We know from the physics of the problem thus for-
mulated that this double-gyre circulation will develop
intense western boundary currents {WBC). The width of the
WBC depends on the relative values of typical parameters:

P U 1/2 A 1/3
5j'=ﬁ_i, 5,-=(W) ) 5v=(“ﬁ) N

where U = 2nt,,,,,/BLIH, + H,) 8., §,;, and J, correspond to
typical widths of flows controlled respectively by bottom
friction effects, inertial effects in surface layers 1 and 2 (ie.,
above the main thermocline of the ocean at mid-latitudes),
and by lateral friction,

A typical value for the characteristic time scale of bottom
damping is of the order of 116 days (e=10""s~'). This
value was therefore kept for the test. A realistic value of the
wind stress is 1., =10"*m™2s~% Then, the -estimated
widths of the bottom friction and inertial WB layers are:
d,-L=5km and §,- L =28 km. We can then tune the fric-
tional coefficient 4 to “control” simulation features. This
problem has been intensively analysed, especially in the
barotropic case, and has recently been re-examined by
Baning {8] and Le Provost and Verron [32]. We know
that, in the control parameter space, moving from frictional
regimes to increasingly inertial regimes shifts the flow from
stable to unstable states, with western boundary flows
developing a jet which expands eastward from the coast at
the zero wind stress curl latitude and penetrates the domain
to a variable extent, depending on the inertial character of
the regime considered. Westward return flows then develop
on each side of this jet. These flows, if inertial enough, can
develop shear barotropic and baroclinic instabilities, which
lead to meanders, and eddies drifting westward to join the
WBC. For the present test, we have chosen a regime which
can be considered as marginally stable; i.e., the jet flowing
eastward remains stable, and only the return flow on the
two sides of the jet is unstable. This regime is controlled by
lateral friction: with 4 = 1000 m?s %, the estimated width
of the WBC &L =37km. We selected this intermediate
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case, between frictional and inertia]l controls, because the
corresponding solution is particularly sensitive to the
numerical noise of the computation.

Choice of Grids and Time Steps

Knowing that the chosen test will lead to a solution with
a WBC and a mid-latitude jet width of the order of 40 km,
the finite difference grid is taken as 20 km and the finite eie-
ment grid as presented in Fig. 1, with this 20 km-resolution
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in the western central part of the basin and a mesh
increasing up to 100km on the eastern boundary. The
time step used for the FD meodel is typically 2h a value
chosen on the basis of experience. For the FE model, the
experiment was started with the same 2 h AT, but it was
necessary to decrease this time step to ! h, in order to avoid
numerical instabilities appearing when the turbulent regime
developed.

Integral Energy Quantities for Global Control

Given the huge volume of information provided by the
test experiments, one easy way to check the time evolution
of the computed solutions is to integrate some encrgy
quantities over the domain and for each layer. Kinetic and
potential energy integrals were thus chosen:

H,;
K= 7’ f iVi;1%,  global kinetic energy of layer i
L2

/3 ~ - .
—OfJ. Wi —dil% where W=y, —C,

12 =5
ey 28i+1/2 Q

global potential energy of interface i + 3.

In the following experiments, these quantities will be plotted
versus time and compared for each layer (Figs. 2a, b, c}and
each interface (Figs. 3a, b).

4. BRIEF DESCRIPTION OF THE NUMERICAL
EXPERIMENT CHOSEN FOR THE COMPARISON

The experiments are started from rest. Let us briefly
review the different phases of the spinup (for more details,
see, for example, Holland and Schmitz [ 287 or Le Provost
and Verron [32]} At t =9, the wind stress curl is applied to
the surface of the basin, thus driving a flow in the upper
layer which, by pressure effects, moves the lower layers and
particularly the second layer which is above the main ther-
macline (see Figs. 2 and 3). Given the pattern of the wind
stress curl, a doubie-gyre circulation results, which is sym-
metrical in relation to the zero wind stress curl line y =0
{called the Sverdrup recirculations in this linear phase of the
spinup). These flows accelerate and, because of the effect of
the north-south gradient B of the Coriolis parameter
f=/fo+ By, they progressively build a western boundary
current {(WBC). This WBC becomes more and more
energetic with time. It gradually results in a mid-basin zonal
Jet penetrating eastward along the zero wind stress curl line,
and recirculating westward on the two sides through
strongly inertial inner gyres superimposed on the Sverdrup
global scale recirculation. This spinup needs a long integra-
tion: in Figs. 2 and 3, we can observe that the kinetic and
potential energies increase regularly up to 1200 days. By this
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time, a new phase develops which corresponds to the
appearance of instabilities due to horizontal shears in the
flows (barotropic instabilities) and vertical shears between
the flows of the different layers (baroclinic instabilities). The
barotropic instabilities are known to develop first in the
westward recirculation section of the inner gyres [32].
Generally, they progressively destabilize the eastward jet
itself, leading to meanders and eddy shedding. However, in
the present case. the controlling parameters have been
chosen so that the mstabilities occur only in the westward
recirculation and keep the jet stable. One advantage of this
solution is precisely that it is very sensitive to the properties
of the numerical schemes, which can lead, if these properties
are poor, to artificial destabilization of the jet. These
instabilities occur in the upper layers where the flow is very
energetic. A major process which then takes place is the
rapid transfer of energy to the lower layers, where the
instabilities drive flows at the eddy scale (sec period
t=1200-1600 days in Figs. 2 and 3). After a phase of adjust-
ment, the whole dynamics of the basin reaches a quasi
“steady state,” where the global energy levels in the three
layers stabilize, oscillating around mean typical values. The
3D flow is in statistical (and energetic) equilibrium: energy
introduced in the basin by the wind field is now balanced by
dissipation through lateral eddy viscosity in the different
layers and bottom friction in the bottom layer.
Iliustrations of typical instantaneous stream functions are
shown for the three layers, at ¢ =2000 days in Fig. 4 and
r=2500 days in Fig. 5. In Figs. 4a and 5a, one may observe
the strong and narrow jet penetrating eastward over £ of the
width of the basin, the unstable westward return flow, and
the western boundary currents, In Figs. 4b and Sb, for the
second layer, the jet and the unstable inner gyre recircula-
tion are still present, but the Sverdrup recirculations, at the
basin scale, have almost compietely disappeared, thus
making it possible to clearly observe the presence of Rossby
waves. These result from energy radiation, produced by the
instabilities of the inner flows, and propagate westward. In
Figs. 4¢c and 5S¢, for the bottom layer, oaly the signatures of
the instabilities induced from the upper layers are visible,
these being associated with eddies and Rossbly waves of
layers 1 and 2. All these transient instabilities occur over
time. The experiments were run until day 3000, as illustrated
in figures 2 and 3, clearly showing that a statistical steady
state was reached. From this set of instantaneous fields,
mean flow solutions can be computed over a time sequence
long encugh to eliminate the unsteady part. The mean fields
presented in figures 6 and 7 were obtained by averaging aver
1000 days, from day 2000 to day 3000. Their main features
may be summarised as follows: in figures 6a and 7a, based
on FD and FE solutions, the mean stream function in the
upper layer is characterized by a broad mid-basin jet, with
return flows partly recirculating directly within a doubie
inner gyre and the rest of the flow joining the large-scale
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Sverdrup recirculation. In the second layer, the Sverdrup of the upper layers and interfaces and to the eddy forcing
recirculation is virtually absent and the main flow is reduced  which results (see, for example, [287).

to the double mnner gyres on the two sides of the mid-basin
jet. In the bottom layer, under the main thermocline, the
mean flow exhibits a set of eight zonal gyres, alternatively
cyclonic or anticyclonic, the strongest of which is under the This experiment was run with the two models, the main

mid-basin jet. These mean zonal gyres are typical of this goal being to compare the performances of the two
class of experiment and physically related to the instabilities methods.

5. COMPARISON OF THE FD AND FE SOLUTIONS

Sk i b

Bl L

il e

FIG. 4. Typical examples of instantaneous stream functions for layers 1 to 3, at time t = 2000 days. Contour intervals (Cl) are (a) 20,000 m?s "' for
layer 1. (b) 8000 m* ~ for layer 2, and (c} 2000 m? =" for layer 3. In (a} the major features are the mid-basin castward jet stream and the westward
meandering inner recirculations, superimposed on the double gyre basin scale wind-driven Sverdrup recirculation, which is present in the surface layer
only. In the second layer (b}, the jet and its inner recirculation is still present, but the absence of Sverdup recirculation makes it possible to clearly observe

the Rossby wave patierns radiating from the instabilities of the main flow and propagating westward, as would be seen on short time scale SEQUERNCES.
These Rossby wave patterns are even more visible on the lower layer (c).
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The Spinup Phase

During the first period of the spinup {day O to 500},
corresponding to the setting up of the double-gyre large
basin scale circulation, with the build up of the WBC, the
two solutions are exactly the same, as can be observed in
Figs. 2 and 3. A more quantitative comparison is provided
m Figs. 8 and 9, which shows the differences between the
kinetic and potential energies, integrated over the whole
basin. The similarity between the two runs during this initial
phase can clearly be seen: no difference is noticeable. in the
kinetic energy, while only a very small deficit (a few per
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1000} appears after 500 days in the potential energy of the
finite difference solution compared with that of the FE
solution.

During the second phase (day 500 to 1200), when
the flows continue to accelerate in layers 1 and 2, thereby
buliding up the jet which penetrates eastward along the
mid-axis of the basin, the two solutions continue to evolve
in the same way. The slight deviation already observed on
the potential energy integrals becomes stronger but only by
up to 1 %.

This slight difference must explain why the FE solution
becomes destabilized about 15 days before the FD solution,

FIG. 5. The same as for Fig. 4, but for time ¢ = 2500 days. Note that the CI are 1000 m?s~' for layer 3.
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the energy level and velocity gradients necessary for the
start of shear instabilities being achieved earlier. This can be
clearly seen in Fig. 2¢, where the kinetic energy in the lower
iayer starts to increase sooner, and in Figs. 3a and b, where
the potential energy decreases in the same time period.
After instabilities in the flow have started, the difference
between these integral quantities oscillates. This is logical,
since the two solutions have not destabilized at the same
time, and thus not exactly at the same initial state, As we are
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now in a non-linear regime, even with only slightly different
initial conditions, identical solutions cannot be expected.
One major point, however, is that, for cach integral quantity
(potential and kinetic energy), the asymptotic mean value is
the same for both simulations. It should be noted, however,
that the FE solution on the potential energy integrals is
confirmed as being a little more energetic, by a difference
of 1% for the upper interface and by 3% for the lower
interface.

I A

P I N S

FIG. 6. Finite difference solution. Mean streamfunctions averaged over 1000 days, from day 2000 to day 3000. The CT are (a) 20,000 m’s ~' for layer

1, {b) 6000 m?s~! for layer 2, and (c) 800 m?s ~! for layer 3.
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The Statistically Steady State

Two major conclusions are reached from the comparison
of the mean streamfunction fields displayed in Figs. 6 and 7.
On the one hand, the main flow characteristics appear to
be the same. This is a major point, since it leads to the
conclusion that the two models, despite their very different
numerical characteristics, result in the same zero-order
solution. Consequently, this validates the new FE code.

On the ather hand, careful analysis of these solutions
reveals that the two mean steady state solutions are not
strictiy the same. For the upper lavers, the FD solution
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gives higher values, by a few percent, for the eastern half of
the basin. For the lower layer, the FE solution displays
slightly different patterns for the secondary southernmost
and northernmost gyres, which do not extend as far
eastward and are more energetic. These differences must
certainly be attributed to the grid chosen for the FE model,
which appears too coarse over the eastern and extreme
southern and northern parts of the basin. Baroclinic
motions are thus poorly resolved in these areas.

These similarities between the two solutions confirm the
feasibility of using the FE model to resolve the main physi-
cal processes of the type of problem we are interested in.

FIG. 7. The same as for Fig. 6, but for the finite element model. The different patterns are qualitatively and quantitatively very similar for the two
upper layers, Some differences appear for the lower layer (see comments in Section 5).
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However, the small discrepancies observed could provide a
warning on the limits concerning the resolution to be used
il they are shown to be significant.

Are These Differences Significant?

To answer this question, a third experiment was con-
ducted using the FD model. A very limited amount of noise

21z
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was introduced in the sojution at day 600, that is at the end
of the linear regime. A white noise of amplitude of less than
155 Of the maximum streamfunction value in each layer
was superimposed on the instantaneous fields, and the
experiment was continued up to day 3000, as for the
previous simulations.

The conclusions are very insiructive:
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3000 days of integration of the comparison test. The units are the same as for Fig. 2. These quantities are the same for the two solutions for layer | (a),
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reached the unstable regime sooner than the FD solution.
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1. The integral kinetic and potential energies computed
as above are shown in Fig. 10. It appears that the kinetic
energy asymptotic levels remain the same, but the potential
energy levels for the perturbed simulation are significantly
lower than in the reference simulation. This is particularly
true for the upper interface, where there is a difference of
20%.
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FIG. 9. The same as Fig. 8 but for the potential energy differences.
Comments are nearly the same except that the value around which these
differences oscillate is not zero: the mean potential energy of the FE
solution is slightly higher than that of the FD solution.
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2. Destabilization of the flow occurs 60 days earlier for
the perturbed experiment, as opposed to the 15 days
observed between the FD and FE experiments.

3. Observation of the instantaneous fields (not shown
here) reveals a major difference in that the jet itself is
destabilized in this new simulation, ieading to a decrease in
the penetration of the jet, according to a well-known
process which has been extensively studied for this class of
experiment [28, 17,

These results are a clear indication that the differences noted
in the preceding section between the FD and FE simula-
tions can be considered as extremely small: a very smalil
perturbation of the initial conditions leads to much stronger
differences than those observed when comparing the FD
and FE numerical methods.

CPU and Computer Memory Requirements

Besides examining the feasibility of the new FE method,
a major objective of this comparison exercise was to assess
the computer time requirements of the two methods.
The computations were run on a CRAY-2 computer. As
expected, the FE method appears much more costly in
terms of CPU time. Basically, per time step and grid point,
the cost ratio between FE and FID methods is 40:1.
However, given the reduced number of points resulting
from the FE grid used for the present test, the final cost per
time step at the basin scale is only five times greater for the
FE model. It may be noted that these ratios are close to
those given earlier by Dumas ef /. [ 18] for their FE model
relating to the same QG problem of mid-latitude wind-
driven ocean circulations but limited to the barotropic case.

In terms of central memory, the requirement is three
times lower for the FE model than for the FD one, due to
the fewer integration points required.

6. DISCUSSION AND CONCLUSIONS

The main goals of this paper were: (1) to test the
feasibility of using an FEM as an alternative to the FD
methods usually developed for high resolution, large-scale
ocean circulation modelling; (2) to obtain estimates of the
computer cost requirements for the practical application of
this alternative method; and (3) to reach some conclusions
on the potential interest for ocean modellers of using this
class of method, a method which up till now has not been
applied to this field of oceanography. The first goal has been
dealt with in the previous sections. The conclusion is
positive: this method, as implemented here, is able to
correctly model the different characteristics of the QG
physics of large-scale ocean circulations, their internal
mesoscale variability, and the associated nonlinear inverse
energy cascade. Two points remain to be discussed: the
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FIG. 10. (a) The same as Figs. 2a and 3a, but for a comparison of the finite difference (B} solution of Fig. 2 with a companion FD experiment (C),
where a white noise with an amplitude of less than 1/1000 of the maximum streamfunction value in each layer has been superimposed on the instantaneous
fields at day 600, ie., the end of the quasi-linear regime, One can observe the large difference of about 20% for the mean asymptotic level of potential
energy between (B} and (C), to be compared with the very limited difference that is noticeable between the FE (A) and FD (B) solutions displayed on

Figs. 2a and 3a. {b) Mean solution in layer 1 for experiment (C), to be compared with Fig. 6a. The major difference is the shortening of the jet penetration,
due to its destabilisation.

potential value of the flexibility of the FEM for basin-scaie The test example presented above provides a clear
experiments using realistic complex geometries, and the demonstration of the advantage of using the FEM to refine
possible extension of the present conclusions, based on a the computation grid in areas where the physical processes
model restricted to the QG physics of ocean circulation, to  need very high resolution. But another major advantage of
the more general PE models (PEM } used in dealing with the the FEMs not shown in this paper is the flexibility they offer
thermodynamic part of ocean physics. for matching the computation domain with the complex
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shape of real oceanic basins. It was not the aim of this paper
to illustrate this flexibility of the FE approach. However,
this property of the FEM can be evaluated here in terms of
computer costs. It must be remembered that part of the
efficiency of the FD code applied to the present benchmarks
results from the very fast Helmholtz solver used, but that
the application of this solver is limited to rectangular
geometries. For practical applications to realistic oceanic
domains, the method has to be complemented by a
capacitance matrix technique (see, for example, [4]). This
extension to real oceanic applications results in extra costs
in two ways: (1) an increase of 50% due to the use of a
capacitance method which enables the inclusion of real
coastlines in the computation, and (2) an extra cost due to
the necessity of inserting the integration domain into a rec-
tangular box, thus introducing a lot of new computation
points, the number of which is difficuit to estimate a priori
since it depends on the geometrical characteristics of the
study area. For example, for a mode] of the North Atlantic
basin that we are presently developing, the percentage of
oceanic points within the rectangular computational
domain is 65 %, which results in an increase in the basic cost
of the simpler FD code by a factor of 2.3.

From the initial cost ratio of 40:1 (per time step and grid
point) or 80:1 (when taking into account the fact that the
FE time step is half the FD time step), the two above-
mentioned characteristics of the FEM—i.e., flexibility on
the refinement of the resolution where physically needed
and flexibility to fit the integration domain to the com-
plexity of the real geometry of the ocean basins—help to
reduce the disadvantages of the FEM in relation to the
FDM in terms of computer cost requirements. Overall, this
ratio can be reduced in a practical application to a few units
(here four), without a loss of accuracy in the resolution of
the major physical processes typically involved in the class
of problem considered here. However, naturally, it must be
recognized that the advantage of an FE model in terms of
flexibility to refine the mesh over particular areas would no
longer hold if these areas were not a priori known, or varied
in time, or if the first Rossby radius of deformation had to
be solved everywhere.

The last question to be dealt with relates to whether these
conclusions can be extended to the more general PEM
needed to incorporate the thermodynamic processes in
ocean circulation modelling. Usually, the method of resolu-
tion used for this class of model implies splitting the treat-
ment of the barotropic part (vertically integrated) and the
baroclinic part of the problem (due to temperature, salinity,
and density stratification of the ocean). For the barotropic
part, the equation to be solved is of the Poisson type, as
used above for the barotropic mode of the QG model con-
sidered in this paper. For this part of the PEM resolution,
the previous conclusions are thus valid. What remains to be
investigated is the way the resolution of the baroclinic part
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of the problem has to be implemented in a PE FE model
and what differences arise in relation to models based on the
classical FDM. To answer these questions, such a PE FE
model needs to be developed, but this is beyond the scope
of the present paper. However, it may already be concluded
that FEMs, besides their value in QG modelling, may also
a priori be applied in the fields of PE ocean circulation
modelling.

REFERENCES

1. B. Barnier, B. L. Hua, and C. Le Provost, J. Phys. Oceanogr. 21, 976
(1991).

2. C. Bernier, Ph.d. thesis, Institut National Polytechnique de Grenoble,
1990 (unpublished).

3. G. Birshoff, Regional Conl. Series in Applied Math., Vol. 11 (SIAM,
Philadelphiz, 1972).

4. E. Blayo and C. Le Provost, J. Comput. Phys. 104, 347 (1993).
3. R. Bleck and D. B. Boudra, J. Phys. Oceanogr. 11, 755 (1981).

6. R. Bleck, H. P. Hanson, D. Hu, and E. B. Kraus, J. Phys. Oceanogr. 19,
1417 (1989).

7. A.F.Blumberg and G. L. Mellor, in 3-D Coastal Ocean Models, edited
by N. Heaps (AGU, Washington, DC, 1987).

8. C. W. Boning, Dyn. Atmes. Oceans 10, 63 (1986).

9. C. W. Boning, R. Déscher, and R. G. Budich, J. Phys. Oceanogr. 21,
1271 (1991).

10. F. O. Bryan and W. R. Holland, in Spec. Pub. Inst. of Geophys. (Univ,
of Hawal, Honolulu, 1989},

11. K. Bryan and M. C. Cox, Tellus 19, 54 {1967).
12. K. Bryan, J. Comput. Phys. 3, 347 (1969).

13. K. Bryan, S. Manabe, and R. C. Pacanowski, J. Phys. Oceanogr. 5, 30
{1975).

14. J. ]. Connor and I. D. Wang, in Numerical Methods in Fluid Dynamics
(Pentech, London, 1974).

15. M. D. Cox, Deep Sea Res. 17, 45 (1970).

16. M. D. Cox, in Proc. Symposium on Numerical Models of Ocean Circula-
tion, Durhan, NH (Nat. Acad. Sciences, Washington, DC, 1975).

17. A. M. Davies, Progress in Oceanogr. 15, 72 (1985).

18. E. Dumas, C. Le Provost, and A. Poncet, in 4th Ini. Conf. on Finite
Elements in Water Resources, Hanover (Springer-Verlag, New York/
Berlin, 1982).

19. G. J. Fix, SIAM J. Appl. Math. 29, 371 (1975).
20. G. R. Flierl, Dyn. Atmos. Oceans 2, 341 (1978).

21. H. Friedrich, Proc. Symp. Maths-Hydrodvn, Invest. Phys. Processes in
the sea 10, 1967, p. 134,

22. P. R. Gent and J. C. McWilliams, Dyn. Atmaos. Oceans T, 67 (1983).

23. G. Grotkop, Comput. Methods Appl. Mech. Eng. 2, 147 (1973},

24. D. B. Haidvogel, A. R. Robinseon, and E. F. Schulman, J. Comput. Phys.
34, 1 (1980).

25. D. B. Haidvogel, J. L. Wilkin, and R. Young, J. Comput. Phys. 94, 151
{1991).

26. W. R. Holland and L. B. Lin, J. Phys. Oceanogr. 5, 642 {1975).

27. W. R. Holland, J. Phys. Oceanogr. 8, 363 (1978).

28. W._J. Holland and W. J. Schmitz, J. Phys. Oceanogr. 15, 1859 (1985).

29. A. Kasahara, Mon. Weather Rev. 102, 504 (1974).

30. C. Le Provost, in Finite Element in Water Resources (Springer-Verlag,
New York/Berlin, 1984),



INTEGRATING A MODEL QOF QCEAN CIRCULATIONS 359

31, C. Le Provost and P. Vincent, J. Comput. Phys. 65, 273 {1986).
32. C. Le Provost and I. Verron, Dyn. dtmas. Oceans 11, 175 (1987},
33. M. ] Lighthill, Phif. Trans. R. Sec. London 265, 45 (1969).

34. J. P. Mc Creary, Phil. Trans. R. Soc. London 302, 385 (1981).

35. R. N. Miller, A. R. Robinson, and D. B. Haidvogel, J. Compur. Phys.
50, 38 (1983).

36. A, L. New, R. Bleck, Y. Jia, R. Marsh, M. Huddleston, and S. Barnard,
James Rennell Centre for Ocean Circulation Report, 1992,

37. J. M. Oberhuber, in ddvanced FPhysical Oceanography Numerical
Modeiting (Reidel, Dordrecht, 1986), p. 511

38. J. M. Oberhuber, J. Phys. Oceanogr. in press, (1993).
39, J. J. O'Brien and R, O. Reid, J. Atmos. Sci. 24, 197 (1967).
40. N. A. Phillips, Q. J. Roy. Meteorol. Soc. 82, 123 (1956).

SBif116/2-14

41
42
43
44
45
46

47

48

49

. R T. Pollard, Deep Sea Res, 17, 812 (1970),

. A. R. Rebinson and L. J. Walstad, J. Appl. Math. 3, 89 (1987).

. A. 8. Sarkisyan, Qkeanologie 11, 393 (1962).

. P. Schopf and M. A. Cane, J. Phys. Qceanogr. 13, 917 (1983).

. A. ] Semtner and R. M. Servin, J. Geaphys. Res. 97, 5493 (1992).

. C. Taylor and J. M. Davies, in Finite Elements in Fluids (Wiley,
New York, 1975).

. D. Van Forest and G. B, Brundrit, in Advanced Physical Gceanography
Numerical Modelling (Reidel, Dordrecht, 1986), p. 523.

. D. J. Webb, P. D. Killworth, A, C. Coward, and S. R. Thompson,
Natural Environment Councif, Swindon, UK, 1991,

. 1. 3. Westerink and W, G. Gray, Rev. Geophys. 29, 210 (1891).



